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Accelerating the discovery of advanced materials is essential for human welfare
and sustainable, clean energy. In this paper, we introduce the Materials Project
(www.materialsproject.org), a core program of the Materials Genome Initiative that
uses high-throughput computing to uncover the properties of all known inorganic
materials. This open dataset can be accessed through multiple channels for both
interactive exploration and data mining. The Materials Project also seeks to cre-
ate open-source platforms for developing robust, sophisticated materials analyses.
Future efforts will enable users to perform ‘‘rapid-prototyping’’ of new materials
in silico, and provide researchers with new avenues for cost-effective, data-driven
materials design. © 2013 Author(s). All article content, except where otherwise
noted, is licensed under a Creative Commons Attribution 3.0 Unported License.
[http://dx.doi.org/10.1063/1.4812323]

I. INTRODUCTION

Major technological advancement is largely driven by the discovery of new materials. From the
prehistoric discovery of bronze and steel to the twentieth century invention of synthetic polymers,
new materials have been responsible for vast transformations in human civilization. Today, materials
innovations also hold the key to tackling some of our most pressing societal challenges, such as
global climate change and our future energy supply.1, 2

However, materials discovery today still involves significant trial-and-error. It can require
decades of research to identify a suitable material for a technological application, and longer still to
optimize that material for commercialization. A principal reason for this long discovery process is
that materials design is a complex, multi-dimensional optimization problem, and the data needed to
make informed choices about which materials to focus on and what experiments to perform usually
does not exist.

What is needed is a scalable approach that leverages the talent and efforts of the entire materials
community. The Materials Genome Initiative,3 launched in 2011 in the United States, is a large-
scale collaboration between materials scientists (both experimentalists and theorists) and computer
scientists to deploy proven computational methodologies to predict, screen, and optimize materials
at an unparalleled scale and rate. The time is right for this ambitious approach: it is now well
established that many important materials properties can be predicted by solving equations based on
the fundamental laws of physics4 using quantum chemical approximations such as density functional
theory (DFT).5, 6 This virtual testing of materials can be employed to design and optimize materials
in silico.7, 8
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FIG. 1. Overview of the Materials Project thrusts. Computed data are validated, disseminated to the user community, and
fed into analysis that is ultimately used to design new compounds for subsequent computations.

Many research groups have already employed this high-throughput computational approach to
screen up to tens of thousands of compounds for potential new technological materials. Examples
include solar water splitters,9, 10 solar photovoltaics,11 topological insulators,12 scintillators,13, 14 CO2

capture materials,15 piezoelectrics,16 and thermoelectrics,17, 18 with each study suggesting several
new promising compounds for experimental follow-up. In the fields of catalysis,19 hydrogen storage
materials,20, 21 and Li-ion batteries,22–26 experimental “hits” from high-throughput computations
have already been reported.

In recent years, perhaps an even more exciting trend has begun to emerge, which is the integration
of computational materials science with information technology (e.g., web-based dissemination,
databases, data-mining) to go beyond the confines of any single research group. This development has
expanded access to computed materials datasets to new communities and spurred new collaborative
approaches for materials discovery.27, 28 The next step is to leverage open-source development and
interactive web-based technologies to enable user contributions back to the community by reporting
problems, coding new types of analyses and apps, and suggesting the next set of breakthrough
materials for computation. All the pieces are ready to change the paradigm by which materials are
designed.

In this paper, we introduce the Materials Project (www.materialsproject.org), a component
of the Materials Genome Initiative that leverages the power of high-throughput computation and
best practices from the information age to create an open, collaborative, and data-rich ecosystem
for accelerated materials design. Started in October of 2011 as a joint collaboration between the
Massachusetts Institute of Technology and Lawrence Berkeley National Laboratory, the Materials
Project today has partners in more than ten institutions worldwide. The Materials Project web site
currently receives several hundred unique page views a day and has registered more than 4000 users
in academia, government, and industry.

Figure 1 provides an overview of the Materials Project. The Materials Project seeks to accel-
erate materials design by creating open, collaborative systems targeting each step in the computa-
tional materials design process – data creation, validation, dissemination, analysis, and design. In
Secs. II–V, we discuss the Materials Project’s current efforts and future directions in each of these
areas.

II. DATA GENERATION AND VALIDATION

One of the Materials Project’s key thrusts is to compute the properties of compounds for which
experimental data may be incomplete or absent. However, there exist formidable technical and
scientific hurdles to achieving this goal.

http://www.materialsproject.org
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FIG. 2. Number of compounds available on the Materials Project web site since the initial release in October 2011, broken
down by type of compound.

Despite significant improvements in robustness and user-friendliness of first-principles codes,
it is still far from trivial to automate and store tens of thousands of calculations. First principles
calculations are computationally expensive (a single material might require several hundred central
processing unit (CPU)-hours just to obtain basic properties), often require serial actions (e.g., one
needs to calculate an optimized crystal structure before one can perform property calculations), and
often require human intervention to arrive at a converged, reliable result. To address these issues,
the Materials Project has developed its own workflow software (“FireWorks”) for automating and
managing all computational steps at large supercomputing centers, and job management software
(“custodian”) to perform all the calculations needed to determine a property. As an example, when
performing energy optimization runs, it automatically ‘‘self-heals’’ by applying rule-based fixes to
failed runs, updating cluster as well as convergence parameters. The system can also automatically
prevent duplicating jobs and apply different types of workflows when detecting, for example, a metal
versus an insulator. These codebases will be further described in a future publication, but are already
available as fully functional open-source packages that can be leveraged by the computational
research community.29 Using this infrastructure, the Materials Project has built a sizable materials
database that today contains computed structural, electronic, and energetic data (calculated using
the Vienna Ab initio Simulation Package30, 31) for over 33 000 compounds (Figure 2), obtained
using over 15 million CPU-hours of computational time at the National Energy Research Scientific
Computing Center (NERSC).

Today, the vast majority of the Materials Project data are for compounds in the Inorganic Crystal
Structural Database (ICSD).32, 33 Going forward, a significant challenge is the generation of novel
compositions and compounds to perform calculations. This problem presents one of the foremost
challenges in computational materials science. There already exist multiple algorithmic approaches
to tackle this problem. Optimization-based approaches33–37 (such as genetic algorithm and simu-
lated annealing) have been heavily investigated and data-driven approaches38–40 are beginning to
emerge, but no technique is ideal. However, the growth of web-based collaboration presents the
opportunity for another method of generating new compounds: crowd-sourced suggestions coupled
to computations-on-demand. In this method, crystal structures designed by the user community
will be automatically fed into our calculation infrastructure, with the results reported back to the
community.

A final concern when generating large data sets is validating the accuracy of the calculated
data. A major challenge of the Materials Project is to present calculated data for a broad audi-
ence, including researchers who may be unfamiliar with the limitations of first-principles meth-
ods. One way to address calculation inaccuracy is to develop strategies that improve agreement
with experimental results. For example, inaccurate reaction energies are sometimes obtained when
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FIG. 3. Band structure and density of states for Si from the Materials Project web site, with a visual warning and link to
more information at bottom regarding limitations to the accuracy of computed band gaps (the measured band gap of Si is
about 1.1 eV).

employing a single approximation (e.g., DFT) to calculate reactions between solids and gases,41, 42

between some elements and their binary compounds,43, 44 or between metals and insulators con-
taining correlated d or f electrons.45 The Materials Project reports more accurate results over such
wide chemical spaces by employing separate methodologies (including use of reported experi-
mental data) for different classes of materials, and using a set of reference reactions to connect
results from different methods. This approach has been employed for solid-gas reactions,41 d-block
oxide reactions,45 and dissolved ions in solution.46 The Materials Project is similarly exploring
methods for improving other predicted properties such as band gaps.47–51 The project aims to re-
port data in a way that can be interpreted, as much as possible, at face value by any materials
researcher, and provide additional information to guide the user (Figure 3). Furthermore, the Ma-
terials Project makes available (see Sec. III for more details) the “raw,” unmodified data to users
who want to apply their own correction techniques or datamine errors within the computational
methodologies.

Despite continual improvements in calculation methods, it is a reality of high-throughput com-
putation that some of the data will be incorrect. We are currently using both automated and crowd-
sourced means to verify the integrity of our data. In terms of automated analysis, we validate
calculated oxidation states, cell volumes, and bond lengths versus experimental data and report clear
visual warnings on the web site for compounds where these values fall outside normal limits. For
example, the structures of many layered compounds that are bonded by van der Waals interactions
are not accurately modeled by standard DFT functionals;52–54 those materials display a visual warn-
ing on the web site indicating that experimental and computational structures do not agree. Just as
important as automated verification is the “Report Issues” button on the web page for each material,
which users can click to report problems with the data. For example, users have employed this button
to report issues with the magnetic structure of several entries, which would be otherwise difficult to
detect automatically.
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FIG. 4. Screenshot of the top portion of the details page for Fe2O3. The page also contains electronic structure information
(Figure 3), and (not shown) the lattice parameters and atomic positions of the structure, a calculated x-ray diffraction pattern,
and basic calculation parameters and output.

III. DISSEMINATION: PROVIDING OPEN, MULTI-CHANNEL ACCESS
TO MATERIALS INFORMATION

Once the data is generated and verified, the Materials Project aims to provide access to the data
in a way that enables flexible and innovative usage. The Materials Project provides multiple channels
to access its large and rich materials dataset.

The primary access point for most users is the web applications, which provide graphical user
interfaces to query for various forms of raw and processed materials data. Several such applications
are already available. The Materials Explorer, for example, allows users to search for materials
based on composition or property and explore their properties (Figure 4), while the Lithium Battery
Explorer adds application-specific search criteria such as voltage and capacity for targeted searches
for lithium-ion battery electrode materials. Additional web applications allow users to interactively
analyze the dataset. For instance, the Phase Diagram App (Figure 5) constructs low-temperature
phase diagrams for any chemical system, supporting both closed systems and open systems (grand
canonical construction).55, 56 The Reaction Calculator balances reactions and computes reaction
energies between any set of compounds in the database, with comparisons to experimental reaction
energies automatically reported where available.

Going forward, the Materials Project is committed to further expanding the number of quality
web applications that provides sophisticated analyses of its data. An application that generates
computed Pourbaix diagrams (aqueous solubility) based on the methodology of Persson et al.46

is currently in development. The Materials Project also plans to leverage on the expertise of the
large materials research community to create novel applications with materials data, and provide the
means for user-submitted applications to be hosted in the future.

While web applications provide a means for exploratory data analysis, they are not an effective
means for a user to obtain large quantities of materials data. The Materials Project recognizes that
there may be users who require access to large datasets to datamine for trends across chemistries.
Alternatively, users may wish to build their own applications that combine a local dataset with that
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FIG. 5. Low-temperature phase diagram of Ti–Ni–O generated by the PDApp (left) and at 750 ◦C from ASM online
(right).65, 66 Overall, the diagrams are very similar; a major difference is the presence of Ti3O5 and several Ti-peroxide
suboxide phases (Ti30, Ti6O) in the computational diagram.

of the Materials Project, for instance, to build a unified phase diagram through the Phase Diagram
App.

To support the needs of such users, the Materials Project recently launched the Materials
application programming interface (API). This API provides users with direct access to the
data and operates similarly to other web-based information portals (such as Google Maps) that
allow external developers to create their own applications or analyses from the data set. The
Materials API is based on REpresentational State Transfer (REST) principles that provide data
access via the Hypertext Transfer Protocol (HTTP). For the purposes of the Materials Project,
this means that each object (such as a material) can be represented by a unique URL (e.g.,
http://www.materialsproject.org/rest/v1/[unique-id]), and an HTTP verb can be used to act on that
object.57 This action then returns structured data, typically in the widely used JavaScript Object
Notation (JSON). A high-level interface to the Materials API has been built into the open-source
Python Materials Genomics (pymatgen) analysis library (see Sec. IV) that provides a powerful way
for users to programmatically query and analyze large quantities of materials information.58

Today, the Materials API only supports unidirectional information transfer – from the Materials
Project to the user. Future versions of the Materials API will provide a channel for users to transfer
information to the Materials Project. For example, it will be the method by which users can submit
compounds to the Materials Project for automatic computation (“calculations-on-demand”). It will
also allow users to submit supplementary information about materials (e.g., the crowdsourcing of
experimental data, or tag compounds with publication references). Two-way interaction will further
broaden the scope of collaborative science possible within this framework.

IV. ANALYSIS: OPEN-SOURCE LIBRARY

To extract useful insights from the data, the dissemination of large and rich materials data sets
must be complemented by accessible analysis tools. For instance, from the energies obtained from
basic electronic structure calculations, one can derive stability assessments via the construction of
phase diagrams, which is useful for most materials design and synthesis problems. From computed
band structures, one can derive band gaps, the nature of optical transitions (indirect/direct), and
effective masses of charge carriers, which are useful for design of functional electronic materials
such as thermoelectrics or transparent conducting oxides.

With large and rich materials data sets such as those in the Materials Project, there is also
the potential to apply statistical learning techniques to datamine trends across a broad range of
chemistries. One such example is given in Figure 6, which plots the percentage of Cr sites in 4-fold

http://www.materialsproject.org/rest/v1/[unique-id]
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FIG. 6. Distribution of oxygen coordinations for chromium in oxides. The percentage of 4-fold and 6-fold coordinated sites
for different Cr oxidation states is given. This analysis can be performed with a few lines of codes using pymatgen and the
REST interface.

or 6-fold coordination in oxides as a function of oxidation state. The data support known chemical
principles: the smaller Cr6+ ion strongly favors 4-fold (tetrahedral) coordination, while the larger
Cr3+ ion strongly favors 6-fold (octahedral) coordination.

The Materials Project believes that the best way to develop robust and insightful analyses is
by leveraging on the expertise of the entire materials research community. To this end, the Mate-
rials Project adopts the best practices of open source software development to build collaborative
platforms for materials data analysis. Almost all of the software infrastructure powering the Ma-
terials Project is publicly available under open-source licenses. For example, the Python Materials
Genomics library58 defines core Python objects for materials data representation, and provides a
well-tested set of structure and thermodynamic analyses relevant to many applications. Pymatgen
already has more than 100 active collaborators worldwide and continues to grow in function-
ality and robustness every day. Some examples of community contributions include support for
F EFFective (FEFF) calculations59 contributed by Alan Dozier from the University of Kentucky, and
for ABINIT60 calculations by Matteo Giantomassi at Université catholique de Louvain. A database
add-on (pymatgen-db) enables the creation of local “Materials Project-like” MongoDB databases
from high-throughput computations that researchers can use to store and query their calculated
datasets.57, 58, 61 All software components29 are hosted on GitHub (www.github.com), a social cod-
ing platform that allows users to report bugs and contribute to development. The libraries can also
be easily installed (using pip or easy_install) through the Python Package Index.

V. DESIGN: A VIRTUAL LABORATORY FOR NEW MATERIALS DISCOVERY

Computed information and analyses should ultimately culminate in new materials design. An
example of this process is depicted in Figure 7: using a combination of several Materials Project
tools, it is possible to perform many aspects of materials design in silico. One can imagine a scientist
looking for a material with certain band structure features and thermodynamic stability criteria.
From searching the Materials Explorer, the user finds a very suitable ruthenium-containing oxide
compound, but the cost associated with ruthenium excludes the material from being a commercially
viable candidate. With the assistance of applications such as the Crystal Toolkit and Structure
Predictor, the user is able to design a range of viable compounds consisting of less expensive
transition metal ions with similar size and valence. The user then submits the designs to the Materials
Project and receives the results within a few days where the electronic properties as well as the
thermodynamic stability of the novel compounds are assessed using the Materials Explorer and
Phase Diagram App. Compounds that meet property targets can then be fed into higher-order
calculations, or immediately forwarded to the lab for experimental investigation.

A real-world example of such a computational design workflow is illustrated in Figure 8, where
we describe the steps in the discovery of a novel class of carbonophosphate compounds for Li ion

http://www.github.com
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FIG. 7. Rapid prototyping and iterative materials design steps that might be performed in silico.

FIG. 8. Example of computationally driven design of new Li-ion battery cathodes. (Top-left) A family of compounds
containing Na, a transition metal, and mixed polyanion group is investigated computationally for stability (the corresponding
Li compounds were computed to be too unstable for direct synthesis).25 The ground state “hull” connects the energy of
all ground state phases in an energy-composition diagram. The energy above hull is a computed descriptor of the stability
of a compound, and in essence describes the thermodynamic decomposition energy of the compound into the most stable
phases. Thermodynamically stable compounds exhibit an energy above hull of zero, with greater values indicating decreasing
stability. (Top-right) Electrochemical properties are calculated for Li versions of compounds predicted to be stable in the
Na form, such as the Fe-containing phosphocarbonate. (Bottom-left) Hydrothermal synthesis produces a colorful family
of sodium metal phosphocarbonate materials as predicted by computation.26 (Bottom-right) The Na compounds are ion
exchanged to form their Li analogues, and predicted battery properties are confirmed.23
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battery cathode applications.23, 25, 26 Prediction of stable compounds and a decision to use Na-Li ion
exchange for synthesis were largely done using computation, along with screening the candidates
for promising battery properties. The computational data served to focus the experimental synthesis
as well as the electrochemical testing to only the most promising portions of chemical space.

Even in the short span of time since its inception in October 2011, we have begun to see the
application of Materials Project data in materials design by researchers outside of the core group
of developers. Users have already employed the data from the site in a variety of applications
including benchmarking theoretical investigations,44, 62 and in the design of Li-ion battery anodes,63

photocatalysts,10 and magnetic materials.64

VI. CONCLUSION AND FUTURE

Advanced materials are essential to human well-being and to form the cornerstone for emerg-
ing industries. Unfortunately, the traditional time frame for moving advanced materials from the
laboratory into applications is remarkably long, often taking 10–20 years. The Materials Genome
Initiative, of which the Materials Project is a part, is a multi-stakeholder effort to develop an infras-
tructure to accelerate advanced materials discovery and deployment. The Materials Project combines
high-throughput computation, web-based dissemination, and open-source analysis tools to provide
material scientists with new angles to attack the materials discovery problem.

Looking ahead, the Materials Project aims to form a backbone that can be expanded to new
areas. As new theoretical techniques are developed, they can be “plugged in” to our workflow
engine and applied across all materials in the database. Efforts targeting prediction of surface
energies, elastic constants, point defects, and finite temperature properties using large data sets and
novel algorithms are underway. The dissemination and front-end tools are being expanded to new
datasets, such as experimental data for comparison with computed results. Finally, a “calculations-
on-demand” feature will allow scientists to directly contribute new compound ideas to the database.
Far from being a final product, the Materials Project is an evolving resource that we expect will
grow more useful from ever-increasing data sets and network effects from its user base. It is our
belief that deployment of large-scale accurate information to the materials development community
will significantly accelerate and enable the discovery of improved materials for our future clean
energy systems, green building components, cutting-edge electronics, and improved societal health
and welfare.
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